EE 330 Lecture 17

MOSFET Modeling

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22 Final Exam Monday Dec 16 12:00 - 2:00 PM

Limitations of Existing MOSFET Models

Better Model of MOSFET is Needed!

n-Channel MOSFET Operation and Model

Model in Cutoff Region

n-Channel MOSFET Operation and Model

Increase V_{GS} more

Inversion layer forms in channel Inversion layer will support current flow from D to S Channel behaves as thin-film resistor

 $I_D R_{CH} = V_{DS}$ $I_{G}=0$ $I_{\rm B}=0$

n-Channel MOSFET Operation and Model

n-Channel MOSFET Operation and Model

Triode Region of Operation

 $(V_{GS} - V_{TH})\mu C_{OX}$ CH $W(V_{GS} - V_{TH})\mu C_{ox}$ $R_{\text{cut}} = \frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $=$ -For V_{DS} larger

$$
I_{D} = \mu C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}
$$

$$
I_{G} = I_{B} = 0
$$

Model in Triode Region

n-Channel MOSFET Operation and Model

Increase V_{DS} even more

 $V_{GC}(L) = V_{TH}$ when channel saturates

 $I_D=?$

 $I_{G}=0$

 $I_B=0$

Inversion layer disappears near drain Termed "saturation"region of operation Saturation first occurs when V_{DS} = V_{GS} - V_{TH}

Saturation last lecture gion of **Operation** V_{DS} $V_{BS} = 0$ V_{GS} I_D . I_{G} \bigcap_{B} $I_D = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{GS} - V_{TH}}{2} \right) \left(V_{GS} - V_{TH} \right)$ $\begin{aligned} &\underset{\mathsf{D}}{\text{min}}\underset{\mathsf{S}}{\text{dist}}\underset{\mathsf{F}}{\text{reg}}\overset{\mathsf{W}}{\text{equivalently}}\\ &\underset{\mathsf{D}}{\text{pre}}\underset{\mathsf{L}}{\text{tr}}\left(\mathsf{V}_{\text{GS}}-\mathsf{V}_{\text{TH}}-\frac{\mathsf{V}_{\text{DS}}}{2}\right)\mathsf{V}_{\text{DS}}\\ &\underset{\mathsf{S}}{\text{in equivalently}}\\ &\underset{\mathsf{S}}{\text{equivalently}}\\ &\underset{\mathsf{S}}{\text{in equivalently}}\underset{\mathsf{L}}{\underbrace{\mathsf{W}\left(\$ Example 10 Of

peration
 $\sum_{p=1}^{D} C_{px} \frac{W}{L} \left(V_{gs} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$

or equivalently
 $\sum_{p=1}^{D} \frac{W}{L} \left(V_{gs} - V_{TH} - \frac{V_{GS} - V_{TH}}{2} \right) (V_{GS} - V_{TH})$

or equivalently
 $\sum_{p=1}^{D} \frac{\mu C_{ox} W}{2L} (V_{GS} - V_{TH})^2$
 $\sum_{p=$ France Let $\frac{1}{2}$
 $V_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$ **(i) Detation**
 peration
 peration
 p<sub>1_D= $\mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{\tau H} - \frac{V_{DS}}{2} \right) V_{DS}$

or equivalently
 $I_D = \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{\tau H} - \frac{V_{GS} - V_{\tau H}}{2} \right) (V_{GS} - V_{\tau H})$

or equivalently
 $I_D = \frac{\mu C_{ox} W}{2L} (V_{GS}$ L 2 ^W V V ^I μC V V V V $\n \begin{aligned} &\text{from } \mathbb{R}^{\text{in}}\text{ is given by } \mathbb{R}^{\text{in}}\text{ is given by } \mathbb{R}^{\text{in}}\text{ is given by } \mathbb{R}^{\text{in}} \text{ is given by } \mathbb{R}^{\text{in}} &\text{by } \mathbb{R}^{\text{in}}\text{ is given by } \mathbb{R}^{\text{in}} &\text{for } \mathbb{R}^{\text{in}}\text{ is given by } \mathbb{R}^{\text{in}} &\text{for } \mathbb{R}^{\text{in}}\text{ is given by } \mathbb{R}^{\text{in}} &\text{for } \math$ Fraction

Deration
 $\log_{10} \frac{U}{10} = \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V}{2} \right)$

U_D = $\mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V}{2} \right)$

U_D = $\frac{\mu C_{ox} W}{2L} (V_{cs} - V_{TH})^2$

U_G = I_B= 0 Fraction
 peration
 $\int_{L_{D}}^{L_{D}} \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V_{DS}}{2} \right) V_{0}$

or equivalently
 $I_{D} = \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V_{CS} - V_{T}}{2} \right) V_{0}$

or equivalently
 $I_{D} = \frac{\mu C_{ox} W}{2L} (V_{cs} - V_{TH})^{2}$
 $I_{G} = I_{B} = 0$ Fraction
 peration
 $\int_{L_{D}}^{L_{D}} \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V_{DS}}{2} \right) V_{0}$

or equivalently
 $I_{D} = \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V_{CS} - V_{T}}{2} \right) V_{0}$

or equivalently
 $I_{D} = \frac{\mu C_{ox} W}{2L} (V_{cs} - V_{TH})^{2}$
 $I_{G} = I_{B} = 0$ π and **R Example 10 CF**
 Subset of CPC
 π = μ C_{ox} $\frac{W}{L} \left(V_{\text{cs}} - V_{\text{th}} - \frac{V_{\text{DS}}}{2} \right) V_{\text{DS}}$
 π equivalently
 $= \mu C_{\text{ox}} \frac{W}{L} \left(V_{\text{cs}} - V_{\text{th}} - \frac{V_{\text{CS}} - V_{\text{th}}}{2} \right) (V_{\text{CS}} - V_{\text{th}})$
 $= \frac$ **egion of**

on
 $(v_{gs} - v_{\tau H} - \frac{V_{DS}}{2})V_{DS}$
 ntly
 $(v_{gs} - v_{\tau H} - \frac{V_{GS} - V_{\tau H}}{2})(v_{gs} - v_{\tau H})^2$
 $(v_{gs} - v_{\tau H})^2$ $\sum_{\text{in}}^{\infty} \frac{1}{n} \left(V_{\text{cs}} - V_{\text{th}} - \frac{V_{\text{DS}}}{2} \right) V_{\text{DS}}$

= $\mu C_{\text{ox}} \frac{W}{L} \left(V_{\text{cs}} - V_{\text{th}} - \frac{V_{\text{DS}}}{2} \right) V_{\text{DS}}$

= $\mu C_{\text{ox}} \frac{W}{L} \left(V_{\text{cs}} - V_{\text{th}} - \frac{V_{\text{cs}} - V_{\text{th}}}{2} \right) (V_{\text{cs}} - V_{\text{th}})$

= $\frac{\mu C_{$ **Drift Region of**
 Pration
 $\mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$
 equivalently
 $= \mu C_{ox} \frac{W}{L} \left(V_{cs} - V_{TH} - \frac{V_{cs} - V_{TH}}{2} \right) (V_{cs} - V_{TH})$
 equivalently
 $= \frac{\mu C_{ox} W}{2L} (V_{cs} - V_{TH})^2$
 $= I_B = 0$ For V_{DS} at onset of saturation

$$
I_D = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_{TH})^2
$$

$$
I_G = I_B = 0
$$

n-Channel MOSFET Operation and Model

 $I_B=0$

Termed "saturation"region of operation

Saturation last lecture gion of Operation

For V_{DS} in Saturation

$$
I_D = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_{TH})^2
$$

$$
I_G = I_B = 0
$$

Model in Saturation Region

Model Summary Review from last lecture

n-channel MOSFET

Notation change: $V_T=V_{TH}$, don't confuse V_T with $V_t = kT/q$

Review from last lecture		
Model SumMary	\n 1_{D} \n	\n 1_{D} \n
1/1	\n $V_{\text{BS}} = 0$ \n	
1/2	\n $V_{\text{BS}} = 0$ \n	
1/3	\n $V_{\text{BS}} = 0$ \n	
1/4	\n $V_{\text{BS}} = 0$ \n	
1/5	\n $V_{\text{BS}} = 0$ \n	
1/6	\n $V_{\text{CS}} - V_{\text{TH}} - \frac{V_{\text{DS}}}{2}V_{\text{DS}}$ \n	\n $V_{\text{GS}} \geq V_{\text{TH}} - V_{\text{DS}} < V_{\text{GS}} - V_{\text{TH}}$ \n
1/6	\n $V_{\text{CS}} \frac{W}{2L} (V_{\text{GS}} - V_{\text{TH}})^2$ \n	\n $V_{\text{GS}} \geq V_{\text{TH}} - V_{\text{DS}} \geq V_{\text{GS}} - V_{\text{TH}}$ \n
1/6	\n $I_{\text{BS}} = 0$ \n	
1/6	\n $I_{\text{BS}} = 0$ \n	
1/6	\n $I_{\text{CS}} - V_{\text{TH}} = 0$ \n	
1/6	\n $I_{\text{CS}} = 1$ \n	
1/6	\n $I_{\text{BS}} = 0$	

 t his is a piecewise model (not piecewise linear though) Piecewise model is continuous at transition between regions Model Parameters: $\{\mu, V_{TH}, C_{OX}\}$ Design Parameters : $\{W,$

Note: This is the third model we have introduced for the MOSFET $_{\rm CH} = \frac{E}{\rm W} \frac{1}{(V_{\rm GS} - V_{\rm TH}) \mu C_{\rm OX}}$ $-V_{\text{TH}}$) μC_{ox} (Deep triode special case of triode where V_{DS} is small $\rm\,R_{CH} = \frac{1}{12} \frac{1}{(12.2 \times 10^{-3} \text{ J} \cdot \text{s}^{-1} \text{C})}$

Model Summary Review from last lecture

n-channel MOSFET

Observations about this model (developed for $V_{BS}=0$):

 $\mathsf{I}_{\mathsf{D}} = \mathsf{f}_{1}(\mathsf{V}_{\mathsf{GS}}, \mathsf{V}_{\mathsf{DS}})$ $I_G = f_2(V_{GS}, V_{DS})$ $I_B = f_3 (V_{GS}, V_{DS})$

This is a nonlinear model characterized by the functions f_1 , f_2 , and f_3 where we have assumed that the port voltages V_{GS} and V_{DS} are the independent variables and the drain currents are the dependent variables

General Nonlinear Models Review from last lecture

 I_1 and I_2 are 3-dimensional relationships which are often difficult to visualize

Two-dimensional representation of 3-dimensional relationships

Graphical Representation of MOS Model

 $I_{\rm G} = I_{\rm B} = 0$

Parabola separated triode and saturation regions and corresponds to $V_{DS}=V_{GS}-V_{TH}$

For V_{DS} in Saturation

$$
I_D = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_{TH})^2
$$

$$
I_G = I_B = 0
$$

Model in Saturation Region

PMOS and NMOS Models

- Functional form identical, sign changes and parameter values different
- Will give details about p-channel model later

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume V_{TH} =1V and μ C_{OX} =100μAV⁻²

Solution:

Since $\text{V}_{\text{GS}}\text{>V}_{\text{TH}}$, M_1 is operating in either saturation or triode region Strategy will be to guess region of operation, solve, and then verify region

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume V_{TH} =1V and $\mu C_{\Omega X}$ =100 μ AV⁻²

Solution:

Guess M_1 in saturation

 $(3-V_{TH})^2$ and $(3-V_{TH})^2$ D UNTVOUT THE REQ $OX^{VV}(2)(2)$ D TH 5V=In10K+Voutre de la Requir $I_{\text{D}} = \frac{\mu C_0 x W}{(3-V_{\text{TH}})^2}$ 2L =

Neguired ver Required ver $\overline{}$ required vert Required verification: V_{DS}>V_{GS}-V_{TH}

Can eliminate I_D between these 2 equations to obtain V_{OUT}

 $\left\{ \begin{array}{ccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$ **Contract Contract Contract Contract** ја на против се прот
Се против се против

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume V_{TH} =1V and μC_{Ω} = 100 μ AV⁻²

Example: Determine the output voltage for the following circuit using the square-law model of the MOSFET. Assume V_{TH} =1V and μC_{Ω} = 100 μ AV⁻² 5V

Guess M₁ in triode Required verification: $V_{DS} < V_{GS} - V_T$ Guess M_1 in triode 5V=I_D10K+V_{OUT} $N_D = \frac{\mu C_{OX}W}{I} \left(3 - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS}$ L 2 $\mathcal{L} = \mathcal{L} \mathcal{L}$ **Contract Contract Contract Contract** $\left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$ $=\frac{1}{1}$ 3-V_{TH} $-\frac{13}{2}$ |V_{DS} $\begin{pmatrix} 2 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$ -2 OUT OUT OUT V_{OUT} = 5V-10K $\frac{100\mu\text{AV}^210\mu}{2\text{V}}$ 2V- $\frac{\text{V_{OUT}}}{\text{V}}$ 2 μ (2) μ $\left[\frac{100\mu\text{AV}^{\text{-2}}10\mu}{2\mu}\left(2\text{V-}\frac{\text{V_{OUT}}}{2}\right)\text{V_{OUT}}\right]$ OUT OUT = ^{OV-| O}| ^{ZV-———} | ^VOUT V $V_{\bigcap I}$ it = 5V- 5 2V- $\frac{V_{\bigcap I}}{V_{\bigcap I}}$ $\left[5\left(2V-\frac{V_{OUT}}{2}\right)V_{OUT}\right]$

Solving for V_{OUT} , obtain

 $V_{\bigcap I}$ T = 0.515V

Verification: V_{DS}=V_{OUT}
0.515 <? 2V Yes!

So verification succeeds and triode region is valid

 $V_{\text{OUT}} = 0.515V$

Limitations of Existing Models

Voltage Amplifier

Model Extensions

Projections intersect $-V_{DS}$ axis at same point, termed Early Voltage

Typical values from -20V to -200V

Usually use parameter λ instead of V_A in MOS model

Model Extensions

Model Extensions

Further Model Extensions

Existing model does not depend upon the bulk voltage !

Observe that changing the bulk voltage will change the electric field in the channel region ! V_{DS}

Further Model Extensions

Existing model does not depend upon the bulk voltage !

Observe that changing the bulk voltage will change the electric field in the channel region !

Changing the bulk voltage will change the thickness of the inversion layer Changing the bulk voltage will change the threshold voltage of the device

$$
V_{\text{TH}} = V_{\text{TH0}} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)
$$

φ is the surface potential (some authors use symbol $\Phi_{\rm S}$) $V_{TH} = V_{TH0} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)$
φ is the surface potential (some authors use symbol Φ_s)
γ is the bulk threshold Typical Bulk Effects on Threshold Voltage for n-channel Devices

 -6 -5 -4 -3 -4 -3 -4 -3 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 \prime TH -5V $\mathsf{V}_{\mathsf{TH0}}$ V_{BS} $V_{TH} = V_{TH0} + V \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)$ • Often VBS=0 1/2 0.4 0.6 *^V ^V*

- Bulk-Diffusion Generally Reverse Biased ($V_{BS}<0$ or at least $V_{BS}<0.3V$) for n-channel
- Shift in threshold voltage with bulk voltage can be substantial
-

Typical Bulk Effects on Threshold Voltage for n-channel Devices

Typical Bulk Effects on Threshold Voltage for p-channel Devices

- Bulk-Diffusion Generally Reverse Biased $(V_{BS}>0)$ or at least $V_{BS}>-0.3V$) for p-channel
-
- Same functional form as for n-channel but V_{TH0} <0
• Magnitude of threshold voltage increases with magnitude of reverse bias

Model Extension Summary

Model Parameters : $\{\mu, C_{OX}, V_{TH0}, \phi, \gamma, \lambda\}$

Design Parameters : {W,L} but only one degree of freedom W/L

Operation Regions by Applications

Most analog circuits operate in the saturation region

(basic VVR operates in triode and is an exception)

Most digital circuits operate in triode and cutoff regions and switch between these two with Boolean inputs

Model Extension (short devices)

 $\left(V_{_{\text{GS}}}-V_{_{\text{TH}}}\right)^2$ $V_{_{\text{GS}}}\geq V_{_{\text{TH}}}$ GS THIS ISSUED AND THE STATE OF THE STAT $DS \quad 111$ D I FOX I GS THAT DS GS THE DS GS THAT DISCOVER G S DISCOVER DISCOVER DUE DISCOVER DUE DE DE DE DE DE DE DE D 2 $\begin{array}{ccc} \mathsf{U}_\mathrm{V}\ \mathsf{$ $W(\ldots, V), \qquad \ldots, \qquad \ldots, \qquad \ldots, \qquad \ldots$ $\mathsf{U}_{\mathrm{D}} = \left\{ \mathsf{\mu}\mathsf{C}_{\mathrm{ox}} \right\} \left| \mathsf{V}_{\mathrm{cs}} - \mathsf{V}_{\mathrm{m}} - \frac{\mathsf{V}_{\mathrm{DS}}}{2} \right| \mathsf{V}_{\mathrm{DS}}$ $\mathsf{V}_{\mathrm{cs}} \geq \mathsf{V}_{\mathrm{m}}$ $\mathsf{V}_{\mathrm{DS}} < \mathsf{V}_{\mathrm{cs}} - \mathsf{V}_{\mathrm{m}}$ $\lfloor \begin{array}{ccc} \begin{array}{ccc} \mathsf{G}\mathsf{S} \end{array} \end{array} \begin{array}{ccc} \mathsf{H} & \mathsf{D}\mathsf{S} \end{array} \begin{array}{ccc} \mathsf{S} & \mathsf{I}\mathsf{S} & \mathsf{I}\mathsf{H} & \mathsf{I}\mathsf{S} \end{array} \end{array}$ $\mu C_{\alpha} \frac{W}{R} (V_{\alpha s} - V_{\alpha t})^2$ $V_{\alpha s} \ge V_{\alpha t}$ $V_{\alpha s} \ge V_{\alpha s} - V_{\alpha t}$ $2L$ \sim $\frac{1}{10}$ \sim \sim \sim \sim \sim \sim \int $V_{\alpha} \leq V_{\alpha}$ $= \left\{\mu C_{\infty} \frac{W}{L} \left(V_{\text{cs}} - V_{\text{th}} - \frac{V_{\text{ds}}}{2}\right)V_{\text{ds}} \right\}$ $V_{\text{cs}} \ge V_{\text{th}}$ $V_{\text{ds}} < V_{\text{cs}} - V_{\text{th}}$ $(V_{\text{ex}} - V_{\text{th}})$ $V_{\text{cs}} \ge V_{\text{th}}$ $V_{\text{bs}} \ge V_{\text{th}}$ $V_{\text{bs}} \ge V_{\text{th}}$ *TH*

As the channel length becomes very short, velocity saturation will occur in the channel and this will occur with electric fields around 2V/u. So, if a gate length is around 1u, then voltages up to 2V can be applied without velocity saturation. But, if gate length decreases and voltages are kept high, velocity saturation will occur

$$
I_{\mathrm{D}} = \begin{cases} 0 & V_{\mathrm{gs}} \leq V_{\mathrm{th}} \\ \frac{\theta_{\mathrm{p}}}{\theta_{\mathrm{p}}} \mu C_{\mathrm{ox}} \frac{W}{L} (V_{\mathrm{gs}} - V_{\mathrm{th}})^{\frac{\alpha}{2}} V_{\mathrm{ps}} & V_{\mathrm{gs}} \geq V_{\mathrm{th}} \ V_{\mathrm{ps}} < \theta_{\mathrm{p}} (V_{\mathrm{gs}} - V_{\mathrm{th}})^{\frac{\alpha}{2}} \\ \frac{\theta_{\mathrm{p}}}{\theta_{\mathrm{p}}} \mu C_{\mathrm{ox}} \frac{W}{L} (V_{\mathrm{gs}} - V_{\mathrm{th}})^{\alpha} & V_{\mathrm{gs}} \geq V_{\mathrm{th}} \ V_{\mathrm{ps}} \geq \theta_{\mathrm{p}} (V_{\mathrm{gs}} - V_{\mathrm{th}})^{\frac{\alpha}{2}} \end{cases}
$$

 α is the velocity saturation index, $2 \ge \alpha \ge 1$

Model Extension (short devices) (n-channel device)

$$
I_{D} = \begin{cases} 0 & V_{cs} \leq V_{\text{th}} \\ \frac{\theta_{2}}{\theta_{1}} \mu C_{ox} \frac{W}{L} (V_{cs} - V_{\text{th}})^{\frac{\alpha}{2}} V_{\text{ds}} & V_{cs} \geq V_{\text{th}} & V_{\text{bs}} < \theta_{1} (V_{cs} - V_{\text{th}})^{\frac{\alpha}{2}} \\ \frac{\theta_{2}}{\theta_{2}} \mu C_{ox} \frac{W}{L} (V_{cs} - V_{\text{th}})^{\alpha} & V_{cs} \geq V_{\text{th}} & V_{\text{bs}} \geq \theta_{1} (V_{cs} - V_{\text{th}})^{\frac{\alpha}{2}} \end{cases}
$$

 α is the velocity saturation index, $2 \ge \alpha \ge 1$

No longer a square-law model (some term it an α-power or α-law model)

For long devices, $\alpha = 2$

Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well

Degrading of $α$ is not an attractive limitation of the MOSFET

Be aware of existence but of little use !

(too complicated for analytical calculations, not accurate enough for simulations)

Model Extension (BSIM model)

 λ

Model Errors with Different W/L Values

Binning models can improve model accuracy

BSIM Binning Model

- Bin on device sizes

- multiple BSIM models !

With 32 bins, this model has 3040 model parameters !

 λ

Model Changes with Process Variations

(n-ch characteristics shown)

Corner models can improve model accuracy

BSIM Corner Models with Binning

- Often 4 corners in addition to nominal TT, FF, FS, SF, and SS

- bin on device sizes

With 32 size bins and 4 corners, this model has 15,200 model parameters !

 λ

How many models of the MOSFET do we have?

Switch-level model (2)

Square-law model

Square-law model (with λ and bulk additions)

α-law model (with λ and bulk additions)

BSIM model

BSIM model (with binning extensions)

BSIM model (with binning extensions and process corners)

The Modeling Challenge

 $\mathsf{I}_{\mathsf{D}} = \mathsf{f}_{\mathsf{1}}(\mathsf{V}_{\mathsf{GS}}, \mathsf{V}_{\mathsf{DS}})$ $\mathsf{I}_{\mathsf{G}} = \mathsf{f}_{\mathsf{2}}\left(\mathsf{V}_{\mathsf{GS}}, \mathsf{V}_{\mathsf{DS}}\right)$ $\mathsf{I}_\textsf{B} = \mathsf{f}_3\left(\mathsf{V}_{\textsf{GS}}, \mathsf{V}_{\textsf{DS}}\right)$

Difficult to obtain analytical functions that accurately fit actual devices over bias, size, and process variations

Model Status

In the next few slides, the models we have developed will be listed and reviewed

- Square-law Model
- Switch-level Models
- Extended Square-law model
- Short-channel model
- BSIM Model
- BSIM Binning Model
- Corner Models

Square-Law Model

$$
I_{_{D}}=\begin{cases}0&V_{_{GS}}\leq V_{_{TH}}\\ \mu C_{_{OX}}\frac{W}{L}\bigg(V_{_{GS}}-V_{_{TH}}-\frac{V_{_{DS}}}{2}\bigg)V_{_{DS}}&V_{_{GS}}\geq V_{_{TH}}&V_{_{DS}}< V_{_{GS}}-V_{_{TH}}\\ \mu C_{_{OX}}\frac{W}{2L}\big(V_{_{GS}}-V_{_{TH}}\big)^{^{2}}&V_{_{GS}}\geq V_{_{TH}}&V_{_{DS}}\geq V_{_{GS}}-V_{_{TH}}\\ \end{cases}
$$

Model Parameters : $\{\mu, C_{OX}, V_{TH0}\}$ Design Parameters : {W,L} but only one degree of freedom W/L

Switch-Level Models

 C_{GS} and R_{SW} dependent upon device sizes and process

For minimum-sized devices in a 0.5u process

$$
\textbf{C}_{\textsf{\tiny GS}} \cong \textbf{1.5} \textsf{f} \textsf{F} \hspace{1cm} \textsf{R}_{\textsf{\tiny sw}} \cong \textcolor{red}{\textsf{2K}\Omega} \textsf{n}-\textsf{channel} \textsf{r}
$$

Considerable emphasis will be placed upon device sizing to manage C_{GS} and R_{SW}

Model Parameters : ${C_{\text{GS}}}, R_{\text{SW}}$

Extended Square-Law Model

Model Parameters : $\{\mu, C_{OX}, V_{TH0}, \phi, \gamma, \lambda\}$

Design Parameters : {W,L} but only one degree of freedom W/L

Short-Channel Model

$$
I_{\rm b} = \begin{cases} 0 & V_{\rm cs} \le V_{\rm th} \\ \frac{\theta_{\rm s}}{\theta_{\rm t}} \mu C_{\rm ox} \frac{W}{L} (V_{\rm cs} - V_{\rm th})^{\frac{\alpha}{2}} V_{\rm bs} & V_{\rm cs} \ge V_{\rm th} & V_{\rm bs} < \theta_{\rm t} (V_{\rm cs} - V_{\rm th})^{\frac{\alpha}{2}} \\ \theta_{\rm s} \mu C_{\rm ox} \frac{W}{L} (V_{\rm cs} - V_{\rm th})^{\alpha} & V_{\rm cs} \ge V_{\rm th} & V_{\rm bs} \ge \theta_{\rm t} (V_{\rm cs} - V_{\rm th})^{\frac{\alpha}{2}} \end{cases}
$$

 α is the velocity saturation index, $2 \ge \alpha \ge 1$

Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well

BSIM model

Note this model has 95 model parameters !

BSIM Binning Model

- Bin on device sizes

- multiple BSIM models !

With 32 bins, this model has 3040 model parameters !

 λ

BSIM Corner Models

- Often 4 corners in addition to nominal TT, FF, FS, SF, and SS

- five different BSIM models !

With 4 corners, this model has 475 model parameters !

Hierarchical Model Comparisons

Corner Models

Applicable at any level in model hierarchy (same model, different parameters) Often 4 corners (FF, FS, SF, SS) used but sometimes many more

Designers must provide enough robustness so good yield at all corners

Stay Safe and Stay Healthy !

End of Lecture 17